
SESSION ID: SESSION ID:

#RSAC

Mitja Kolsek

Fixing the Fixing

TECH-R03

CEO and Co-Founder
0patch and ACROS Security
@mkolsek, @0patch

Stanka Salamun
COO and Co-Founder
0patch and ACROS Security
@0patch

#RSAC

16 Years of Breaking in...

FIND PUBLIC
EXPLOIT
for a known
vulnerability

TAILOR
EXPLOIT
to work with
your RAT

MUTATE
EXPLOIT
until VirusTotal
doesn't recognize it

PHISH THE
TARGET
until you're in

#RSAC

„But... We have all this cool technology“

#RSAC

4

Beating Around the Bush

#RSAC

Your Knee Hurts?

Doctors:

„No problem, we‘ll cut off your
leg and replace it with a new
one.“

#RSAC

Security Update Gap

#RSAC

Are 0-Days a Real Problem?

Rob Joyce,
NSA Hacker-In-Chief

„We don't need zero-days
to get inside your network.“

#RSAC

176

Updates: Days from release to install

* US banks; source: NopSec, 2015 State of Vulnerability Risk Management

#RSAC

3

Updates: Days from release to exploit

* Source: FireEye, Angler EK Exploiting Adobe Flash CVE-2015-0359 with CFG Bypass

#RSAC

111.000.000.000

New lines of software code every year

* Cybersecurity Ventures, 0 day report Q1 2017 prediction: 111 billions lines of new code

#RSAC

Patching is Still a Hard Problem

11

#RSAC

But it‘s someone else‘s problem

END OF LIFE
PRODUCTS

• Win Srv 2003, Win XP

• Java JRE 7, IE9, IE10

UNPATCHED
VULNERABILITIES

• 0days

• known vulnerabilities

INTER-
OPERABILITY
REQUIREMENTS

LEGACY SYSTEMS

• SCADA

• Mainframes

3rd PARTY
LIBRARIES

• OpenSSL

IoT

• botnets

• massive attacks against
and from IoT

OLD VERSIONS

• Java

• Flash

• QuickTime

U
SE

R
S •Hate downtime

•Expensive patch
deployment

•Complex patches – no
control of new code

•Uninstalling patches

•Big official updates
change functionalities

•Anti-malware
protections bypassable

•Updating = risk of
breakage

•Not updating = risk of
ownage

SO
FT

W
A

R
E

V
EN

D
O

R
S •Direct and opportunity

costs

•Patch development
„traditional“ and long

•Testing and
distributing fixes is
costly

•Have better things to
do

#RSAC

Emerging Alternatives
in Patching

#RSAC

Evolution of Patching

No
patching

„Fat“
patching

„Live“
patching

Micro
patching

#RSAC

(Re-)Emerging Patching Trends

Live („hot“) patching

Runtime Application Self-Protection (RASP)

Virtual patching

#RSAC

Live Patching

LIVE
PATCHING

Linux/UX

Cloud

App
patching
(Jspatch)

Hot
patching
(discon.)

Adaptive
kernel

live
(Baidu)

Patch
Droid

0patch

Ksplice

Kpatch

Live
Update

Kernel
Care

kGraft

Kexec

XEN
Project

0patch

#RSAC

Linux Live (or „hot“) Patching

• No system/application rebooting

• „unpatch“ feature

• Focused on kernel patching

• From source code, decently automated

• Replacing entire functions
(problem if the function is executing)

Key Characteristics

#RSAC

Linux Live Patching: Before

20

NOP bytes

Original
Function

call

return

#RSAC

Linux Live Patching: After

21

Original
Function

call

Replacement
Function

CALL/JMP

return

#RSAC

Linux Live Patching Today

• Source code needed to replace entire function

• No patching of closed-source applications

• Original function must be prepared to be patchable
(NOP prolog)

• Patching and unpatching functions on call stack is risky
and complex

• Vendor still has monopoly on patches

Shortcomings

#RSAC

Micropatching:
Next-Generation Live Patching
Fundamentally changing the security game!

#RSAC

1. Patching closed-source code

2. Minimal risk of defects

3. Enable 3rd-party review of patches

4. Enable anyone to contribute patches

#RSAC

Micropatching: Before

25

Function

call

return

Some instructions

#RSAC

Micropatching: After

26

Function

call

return

Micropatch JMP

Some instructions

#RSAC

Micropatching Advantages

27

MINIMAL CODE
CHANGES

minimal risk, easy to
review

3RD PARTY
„CROWDPATCHING“

even for closed source

LOW BANDWIDTH

smart grid, satellite,
HF radio, SMS

NO DELAYS

for functions currently
on call stack

IOT: REMOTE
PATCHING

AND UNPATCHING

automatic and safe

POTENTIAL FOR
FORMAL PROOFS

and code-change
impact analysis

#RSAC

Demo:
Micropatching WebEx

#RSAC

What Can be Micropatched?

30

• Native binary files (executables, drivers, libraries)

• Compiled bytecode (Java, C#)

• Just-in-time compiled code

• „Installable“ web applications (WordPress, Magento, Bugzilla,
etc)

• IoT devices

• Medical devices

• Mobile devices – OS and apps

Any „reasonably static“ code

#RSAC

Not Ideal for Micropatching

31

• Administrative scripts

• PHP, Perl scripts

Code that is often manually modified

• In-house web applications (easy to manually modify)

Code that is not deployed to users

#RSAC Goal: Decoupling Security Patches From
(Mostly Functional) Updates

... Fat update
Micropatch
CVE-2020-

3702

Micropatch
CVE-2020-

4284

Micropatch
CVE-2020-

8802

Micropatch
CVE-2020-

8803

Micropatch
CVE-2020-

8966
Fat update

Micropatch
CVE-2020-

9923
...

#RSAC

What Can You Do?

Getting micropatching off the ground

#RSAC

Organizations and Users

34

• Measure your Security Update Gap

• Find main reasons for your delays in applying
security patches

Tomorrow

• Consider using existing live patching for updating
your Linux servers

• Set up a test process for applying micropatches
wherever possible

Next six
months

#RSAC

Software Vendors

35

• Calculate your users‘ costs because of „fat“
(conventional) patching

• Analyze your total production, testing, deployment
and PR costs for in-house security patch production

Tomorrow

• Launch a micropatching pilot with one product

• IoT vendors: consider automatic micropatching of
your devices

Next six
months

#RSAC

Researchers

36

• Arm yourself with powerful tools (WinDbg, IDA,
binary editors)

• Download your copy of free 0patch Agent for
Developers and play with it

Tomorrow

• Brush up on your low level programming, reverse
engineering skills

• When preparing an exploit PoC, also write a
micropatch

Next six
months

#RSAC

Malicious Use of Live Patching

37

• BAE Systems: „Two bytes to $951m“

• SWIFT Alliance Access Software
„micropatched“

• 2 bytes of liboradb.dll replaced with NOP

SWIFT - Bank of Bangladesh

#RSAC

Software Patching Sci-Fi

It's 2025.

People are using 3rd party
patches for "dumbing down"
their smart devices, blocking
vendors from peeking in their
fridge and collecting data.

#RSAC

200 micropatches walk into a bar.
...

Thumbs up if you
think that‘s how

patching should look
like in the future.

Nobody notices.

#RSAC

Let‘s Fix the Fixing!

 We can make attackers‘ job much, much harder.

